Cellulose as an Edible Ingredient for 3D Printing

Sonia Holland, PhD Student
EPSRC CIM in Food and EPSRC CIM in Additive Manufacturing, University of Nottingham
3D Food Printing Conference, Venlo, NL 12th April 2016
Presentation Overview

- Why use cellulose?
- Pre-processing to enable printing
- Application to Additive Manufacturing - Binder Jetting
What is Cellulose?

Glucose is the basic building block.

- **Hierarchical chain structure** for strength.
- **Hydrogen bonds** → tight packing → crystalline, rigid structure.
- **Plant cells**
- **Cell walls**
- **Cellulose microfibrils** in a plant cell wall
- **Cellulose molecules**

- **Abundant**
- **Natural**

≈10^{11}-10^{12} Tons synthesized annually by plants!

Image from: http://bio1151.nicerweb.com/Locked/media/ch05/cellulose.html
Cellulose in the Human Diet

- Impossible to estimate how much we consume daily
- No human enzyme to digest cellulose
- Not fermented by gut bacteria
 $\rightarrow 0 \text{ kcal g}^{-1}$
 \rightarrow Dietary fibre without excess gas production

- Crystalline structure difficult to dissolve
- Often derivatised to partially/fully soluble materials
 \rightarrow Native cellulose typically “bulking agent”
Ball Milling to Alter Properties

Native Cellulose Fibre
- Physical Size Reduction

Cellulose Ball Milled for 30min at 800rpm
- Decreased Molecular Chain Length
- Loss of Crystallinity

Recrystallisation to Structure

X-Ray Diffraction Data Showing Sample Crystallinity

- Thermal analysis of samples undertaken
- Control of moisture and temperature allows recrystallisation control
- Addition of structurally similar polysaccharides can introduce further interactions and control
 e.g. Locust Bean Gum (Galactomannan)
 Glucomannan
 Xanthan Gum
 β-Glucan (from Oat)

Intensity

200 arbitrary units

Native Cellulose (27%)
Recrystallised Sample (20%)
Cellulose Ball Milled 30min (<5%)
AM Process - Binder Jetting

- Powder building material
- Liquid binding material
- Layer by layer approach – 3D model split into 2D cross sections of a defined thickness
- Binder deposition nozzle diameter 21μm (10pL) or down to 10 μm (1pL)
- Potential for 24-bit colour printing

Sugar Structure: http://www.3dsystems.com/culinary
My Materials

Ink: Providing necessary moisture to induce recrystallisation with interacting polysaccharide

Powder: Ball Milled Cellulose with/without interacting polysaccharide

• Powder bed and ink temperature controlled
• Nozzle selected to provide desired moisture
• Not only simple particle adhesion
 → Recrystallisation induced will lead to a more robust structure
Future Work

• Ink development and analysis

• Combine powder and ink in process to develop a working model

• Modify polysaccharides in powder and ink to change structural properties and develop for food use

Drop watcher on Dimatix ink jet printer
Thank you for your attention, Any questions?

Sonia Holland - PhD Student
Division of Food Sciences, University of Nottingham Sutton Bonington Campus,
Loughborough, LE12 5RD